Code No: 841AA JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD MCA I Semester Examinations, October/ November - 2020 MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE

Time: 2 Hours

Answer any five questions All questions carry equal marks

- 1.a) Give the formal definition of a well-formed formula in predicate calculus with examples of formulae that are well-formed and not-well-formed.
- 2.a) Show that $(a \lor \neg b) \land (\neg a \neg \lor c \ b) \land (a \lor \neg a)$ is not a tautology.
 - b) Find a CNF for $(p \rightarrow \kappa) \rightarrow \neg(\neg \kappa p)$.
- 3.a) Let *R* be the following equivalence relation on the set $A = \{1,2,3,4,5,6\}$. $R = \{(1,1),(1,5),(2,2),(2,3),(2,6),(3,2),(3,3),(3,6),(4,4),(5,1),(5,5),(6,2),(6,3),(6,6)\}$. Find the partition of *A* induced by *R*.
 - b) Define the following properties of binary relations with examples.
 - i) Reflexive
 - ii) Symmetric
 - iii) Anti symmetric
 - iv) Transitive.
- 4.a) Find all group conomorphisms from Z_4 into Z_{10} .
- b) Define the following terms with examples:
 - i) Semigroup
 - ii) Monoid
 - iii) Group
 - iv) Abelian group.

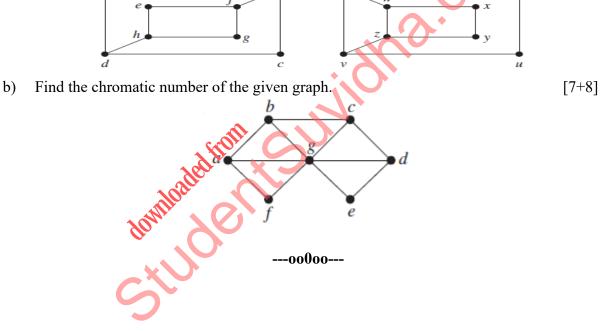
5.a) Using the digits 1,2,3 and 5, how many 4 digit numbers can be formed if

- i) The first digit must be 1 and repetition of the digits is allowed?
- ii) The first digit must be 1 and repetition of the digits is not allowed?
- iii) The number must be divisible by 2 and repetition is allowed?
- iv) The number must be divisible by 2 and repetition is not allowed?
- b) How many different arrangements of the word ELLIPSE are possible if
 - i) There are no restrictions?
 - ii) The arrangement starts with S?
 - iii) Both L's are together?

The letters are in alphabetical order?

[7+8]

Download all NOTES and PAPERS at StudentSuvidha.com


Max.Marks:75

[7+8]

[7+8]

[7+8]

- 6.a) Determine the values of *n* and *r* in the following expressions. i) $nP_2 = 56$ ii) $11C_r = 3 \times 11C_{r-1}$
 - b) Obtain the coefficient of $x^{99}y^{60}z^{14}$ in $(2x^3 + y z^2)^{100}$ using multinomial theorem. [7+8]
- 7. Use generating functions to solve the following recurrence relation: $a_n = 5a_{n-1} - 6a_{n-2}$ for $n \ge 2$, $a_0 = 0$ and $a_1 = 3$. [15]

